# Module pylabfea.mod
'''Module pylabefea.model introduces global functions for mechanical quantities
and class ``Model`` that contains that attributes and methods needed in FEA.
Materials are defined in module pylabfea.material
uses NumPy, SciPy, MatPlotLib
Version: 4.1 (2022-02-22)
Author: Alexander Hartmaier, ICAMS/Ruhr University Bochum, Germany
Email: alexander.hartmaier@rub.de
distributed under GNU General Public License (GPLv3)'''
import numpy as np
import matplotlib.pyplot as plt
import warnings
from pylabfea.basic import Stress, eps_eq, sig_eq_j2, yf_tolerance
from matplotlib import colors, colorbar
# =========================
# define class for FE model
# =========================
[docs]
class Model(object):
'''Class for finite element model. Defines necessary attributes and methods
for pre-processing (defining geometry, material assignments, mesh and
boundary conditions);
solution (invokes numerical solver for non-linear problems);
and post-processing (visualization of results on meshed geometry,
homogenization of results into global quantities).
*Geometry and sections* can be defined with the methods ``geom`` and ``assign``.
There are pre-defined options that make the generation of laminate structures
particularly easy. But also more general section can be defined and each section
can be associated with a different material.
*Boundary conditions* on left-hand-side and bottom nodes are always assumed
to be static (typically with values of zero);
Boundary conditions on right-hand-side and top nodes are considered as load
steps starting from zero.
Default boundary conditions are:
* lhs: fixed in x-direction (ux=0), free in y-direction (fy=0)
* bot: fixed in y-direction (uy=0), free in x-direction (fx=0)
* rhs: free (fx=fy=0)
* top: free (fx=fy=0)
There are pre-defined sets of nodes to top, bottom, left and right boundaries to
which either force or displacement controlled loads can be applied in x or y-direction
with the methods ``bctop``, ``bcbot``, ``bcleft``, ``bcright``. Furthermore, it is
possible to define boundary conditions for a freely defined set of nodes with the
method ``bcnode``. The latter option if useful, to fix only one corner node when
laterally free boundaries shall be implemented. It can also be used to simulate
loads on parts of boundaries, as it occurs for indentations, etc.
*Visualization* is performed with the method ``plot``, which can display various
mechanical quantities on the deformed mesh. Homogenization of boundary loads is
simply performed with the method ``calc_glob`` by which all global stresses and
strains are obtained by averaging over the element values and by summing up the
boundary loads for comparison. This is particularly useful when calculating the
stress-strain behavior of a structure.
Parameters
----------
dim : int
Dimensionality of model (optional, default: 1)
planestress : Boolean
Sets plane-stress condition (optional, default: False)
Attributes
----------
dim : integer
Dimensionality of model (1 and 2 are supported in this version)
planestress : Boolean
Sets plane-stress condition
Nsec : int
Number of sections (defined in ``geom``)
LS : 1-d array
Absolute lengths of sections (defined in ``geom``)
lenx : float
Size of model in x-direction (defined in ``geom``)
leny : float
Size of model in y-direction (defined in ``geom``, default leny=1)
thick : float
Thickness of 2d-model (defined in ``geom``, default thick=1)
nonlin : Boolean
Indicates non-linearity of model (defined in ``assign``)
mat : list of objects to class Material
List of materials assigned to sections of model, same dimensions as LS
(defined in ``assign``)
ubcbot: dim-array of Boolean
True: displacement BC on rhs nodes; False: force BC on rhs nodes
(defined in ``bcright``)
bcb : dim-array
Nodal displacements in x or y-direction for lhs nodes
(defined in ``bcbot``)
ubcleft: dim-array of Boolean
True: displacement BC on rhs nodes; False: force BC on rhs nodes
(defined in ``bcright``)
bcl : dim-array
Nodal displacement in x or y-direction for lhs nodes
(defined in ``bcleft``)
ubcright: dim-array of Boolean
True: displacement BC on rhs nodes; False: force BC on rhs nodes
(defined in ``bcright``)
bcr : dim-array
Nodal displacements/forces in x or y-direction for rhs nodes
(defined in ``bcright``)
ubctop: Boolean
True: displacement BC on top nodes; False: force BC on top nodes
(defined in ``bctop``)
bct : dim-array
Nodal displacements/forces in x or y-direction for top nodes
(defined in ``bctop``)
Nnode : int
Total number of nodes in Model (defined in ``mesh``)
NnodeX, NnodeY : int
Numbers of nodes in x and y-direction (defined in ``mesh``)
Nel : int
Number of elements (defined in ``mesh``)
Ndof : int
Number of degrees of freedom (defined in ``mesh``)
npos: 1d-array
Nodal positions, dimension Ndof, same structure as u,f-arrays:
(x1, y1, x2, y1, ...) (defined in ``mesh``)
noleft, noright, nobot, notop : list
Lists of nodes on boundaries (defined in ``mesh``)
noinner : list
List of inner nodes (defined in ``mesh``)
element : list
List of objects of class ``Element``, dimension Nel
(defined in ``mesh``)
u : (Ndof,) array
List of nodal displacements (defined in ``solve``)
f : (Ndof,) array
List of nodal forces (defined in ``solve``)
sgl : (N,6) array
Time evolution of global stress tensor with incremental load steps
(defined in ``solve``)
egl : (N,6) array
Time evolution of global total strain tensor with incremental load
steps (defined in ``solve``)
epgl : (N,6) array
Time evolution of global plastic strain tensor with incremental load
steps (defined in ``solve``)
glob : python dictionary
Global values homogenized from BC or element solutions, contains the
elements:
'ebc1', 'ebc2', 'sbc1', 'sbc2' : global strain and stress from BC
(type: float)
'eps', 'epl', 'sig', : global strain, plastic strain, and stress
tensors homogenized
from element solutions (type: Voigt tensor)
(defined in ``calc_global``)
'''
def __init__(self, dim=1, planestress=False):
# set dimensions and type of model
# initialize boundary conditions
# dim: dimensional of model (currently only 1 or 2 is possible)
# planestress: (boolean) plane stress condition
if ((dim != 1) and (dim != 2)):
raise ValueError('dim must be either 1 or 2')
self.dim = dim
if planestress and (dim != 2):
warnings.warn('Warning: Plane stress only defined for 2-d model')
planestress = False
self.planestress = planestress
# print('Model initialized')
self.bcl = np.zeros(dim)
self.bcb = np.zeros(dim)
self.bct = np.zeros(dim)
self.bcr = np.zeros(dim)
self.bcn = np.zeros(dim)
self.noset = None
self.ubctop = [False, False] # default free boundary on top
self.ubcright = [False, False] # default free boundary on rhs
self.ubcleft = [True, False] # default fixed boundary in x-direction on lhs
self.ubcbot = [False, True] # default fixed boundary in y-direction on bottom
self.ubcn = [False, False] # default free BC for node set
self.nonlin = False # default is linear elastic model
self.sgl = np.zeros((1, 6)) # list for time evolution of global stresses
self.egl = np.zeros((1, 6)) # list for time evolution of global strains
self.epgl = np.zeros((1, 6)) # list for time evolution of global plastic strain
self.u = None
self.f = None
self.Nnode = None
# SRM : named module glob exists
self.glob = {
'ebc1': None, # global x-strain from BC
'ebc2': None, # global y-strain from BC
'sbc1': None, # global x-strain from BC
'sbc2': None, # global y-strain from BC
'eps': np.zeros(6), # global strain tensor from element solutions
'sig': np.zeros(6), # global stress tensor from element solutions
'epl': np.zeros(6) # global plastic strain tensor from element solutions
}
# ----------------------
# Sub-Class for elements
# ----------------------
[docs]
class Element(object):
'''Class for isoparametric elements; supports
1-d elements with linear or quadratic shape function and full integration;
2-d quadrilateral elements with linear shape function and full integration
Parameters
----------
model : object of class ``Model``
Refers to parent class ``Model`` to inherit all attributes
nodes : list
List of nodes belonging to element
lx : float
Element size in x-direction
ly : float
Element size in y-direction
sect : int
Section in which element is located
mat: object of class ``Material``
Material card with attributes and methods to be applied in element
Attributes
----------
Model : object of class ``Model``
Refers to parent object (FE model)
nodes : list
List of nodes of this element
Lelx : float
Size of element in x-direction
Lely : float
Size of element in y-direction
ngp : int
number of Gauss points
gpx : 1-d array
x-locations of Gauss points in element
gpy : 1-d array
y-locations of Gauss points in element
Bmat : list
List of B-matrices at Gauss points
wght : 1-d array
List of weight of each Gauss point in integration
Vel : float
Volume of element
Jac : float
Determinant of Jacobian of iso-parametric formulation
CV : (6,6) array
Voigt stiffness matrix of element material
elstiff : 2-d array
Tangent stiffness tensor of element
Kel : 2-d array
Element stiffness matrix
Mat : object of class ``Material``
Material model to be applied
eps : Voigt tensor
average (total) element strain (defined in ``Model.solve``)
sig : Voigt tensor
average element stress (defined in ``Model.solve``)
epl : Voigt tensor
average plastic element strain (defined in ``Model.solve``)
'''
def __init__(self, model, nodes, lx, ly, mat):
self.Model = model
self.nodes = nodes
self.Lelx = lx
self.Lely = ly
self.Mat = mat
DIM = model.dim
# Calculate Voigt stiffness matrix for plane stress and plane strain'
if mat.CV is None:
C11 = mat.C11
C12 = mat.C12
C44 = mat.C44
if (model.planestress):
hh = mat.E / (1 - mat.nu * mat.nu)
C12 = mat.nu * hh
C11 = hh
self.CV = np.array([[C11, C12, 0., 0., 0., 0.],
[C12, C11, 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., C44]])
else:
self.CV = np.array([[C11, C12, C12, 0., 0., 0.],
[C12, C11, C12, 0., 0., 0.],
[C12, C12, C11, 0., 0., 0.],
[0., 0., 0., C44, 0., 0.],
[0., 0., 0., 0., C44, 0.],
[0., 0., 0., 0., 0., C44]])
else:
self.CV = mat.CV
self.elstiff = self.CV
# initialize element quantities
self.eps = np.zeros(6)
self.sig = np.zeros(6)
self.epl = np.zeros(6)
# initialize quantities for response function
self.res_sig = None
self.res_depl = None
# Calculate element attributes
self.Vel = lx * ly * model.thick # element volume
self.ngp = model.shapefact * DIM ** 2 # number of Gauss points in element
self.gpx = np.zeros(self.ngp)
self.gpy = np.zeros(self.ngp)
self.Bmat = [None] * self.ngp
self.wght = 1. # weight factor for Gauss integration, to be adapted to element type
self.Jac = self.Vel # determinant of Jacobian matrix, to be adapted to element type
# Initialize dict for convergence stats
self.stat_nlin = {
'max_iter': 0,
'max_steps': 0,
'max_dstiff': 0.
}
# Calculate B matrix at all Gauss points
if (model.shapefact == 1):
if (DIM == 1):
# integration trivial for 1-d element with linear shape function
# because B is constant for all positions in element
self.Bmat[0] = self.calc_Bmat()
elif (DIM == 2):
# integration for 2-d quadriliteral elements with lin shape fct
# full integration with four Gauss points
cpos = np.sqrt(1. / 3.) # position of Gauss points
self.Jac *= 4.
for i in range(self.ngp):
sx = (-1) ** int(i / 2)
sy = (-1) ** i
x = 0.5 * (1. + sx * cpos) * self.Lelx
y = 0.5 * (1. + sy * cpos) * self.Lely
self.gpx[i] = x
self.gpy[i] = y
self.Bmat[i] = self.calc_Bmat(x=x, y=y)
elif (model.shapefact == 2):
if (DIM == 1):
# integration for 1-d element with quadratic shape function
# Gauss integration
cpos = np.sqrt(1. / 3.) # position of Gauss points
self.wght = 0.5
for i in range(self.ngp):
sx = (-1) ** i
x = 0.5 * self.Lelx * (1. - sx * cpos) # positions of Gauss points
self.gpx[i] = x
self.Bmat[i] = self.calc_Bmat(x=x)
elif (DIM == 2):
raise NotImplementedError('Error: Quadrilateral elements' +
'with quadratic shape function not yet implemented')
self.calc_Kel()
[docs]
def calc_Kel(self):
"""
Calculate element stiffness matrix by Gaussian integration
"""
K0 = [(np.transpose(B) @ self.elstiff @ B) for B in self.Bmat]
self.Kel = self.Jac * self.wght * sum(K0)
[docs]
def node_num(self):
'''Calculate indices of DOF associated with element
Returns
-------
ind : list of int
List of indices
'''
ind = []
for j in self.nodes:
ind.append(j * self.Model.dim)
if (self.Model.dim == 2):
ind.append(j * self.Model.dim + 1)
return ind
[docs]
def deps(self):
'''Calculate strain increment in element
Returns
-------
deps : Voigt tensor
Strain increment
'''
deps = 0.
for B in self.Bmat:
deps += self.wght * B @ self.Model.du[self.node_num()]
return deps
[docs]
def eps_t(self):
'''Calculate total strain in element
Returns
-------
eps_t : Voigt tensor
Total strain
'''
eps_t = 0.
for B in self.Bmat:
eps_t += self.wght * B @ self.Model.u[self.node_num()]
return eps_t
[docs]
def dsig(self):
'''Calculate stress increment
Returns
-------
dsig : Voigt tensor
Stress increment
'''
dsig = self.elstiff @ self.deps()
return dsig
[docs]
def depl(self):
'''Calculate plastic strain increment
Returns
-------
depl : Voigt tensor
Plastic strain increment
'''
if (self.Mat.sy == None):
depl = np.zeros(6)
else:
depl = self.Mat.epl_dot(self.sig, self.epl, self.CV,
self.deps())
return depl
[docs]
def calc_Bmat(self, x=0., y=0.):
'''Calculate B matrix at position x in element
Parameters
----------
x : float
absolute x-position in element (optional, default: 0)
y : float
absolute y-position in element (optional, default: 0)
Returns
-------
B : 6xN array
matrix (N=dim^2*(SF+1))
'''
# (B_aj = L_ak N_kj k=1,...,dim a=1,...,6 j=DOF_el)
# 1-d, linear:
# N11 = 1 - x/Lelx N12 = x/Lelx
# L11 = d/dx
# 1-d, quadratic:
# N11 = 1 - 3x/Lelx+2x^2/Lelx^2
# N12 = 4x/Lelx*(1-x/Lelx)
# N13 = -x/Lelx(1-2x/Lelx)
# L11 = d/dx
# all other N_ij, L_ij are zero for 1-dim case
# see documentation for 2-d element
DIM = self.Model.dim
N = DIM * DIM * (self.Model.shapefact + 1)
B = np.zeros((6, N))
if (self.Model.shapefact == 1):
# linear shape function
if (DIM == 1):
hx = 1. / self.Lelx
B[0, 0] = -hx
B[0, 1] = hx
if (DIM == 2):
xi1 = 2. * x / self.Lelx - 1. # scaled x-position within element, xi1 in [-1,1]
xi2 = 2. * y / self.Lely - 1. # scaled y-position
hxm = 0.125 * (1. - xi1) / self.Lely
hym = 0.125 * (1. - xi2) / self.Lelx
hxp = 0.125 * (1. + xi1) / self.Lely
hyp = 0.125 * (1. + xi2) / self.Lelx
B[0, 0] = -hym
B[0, 2] = -hyp
B[0, 4] = hym
B[0, 6] = hyp
B[1, 1] = -hxm
B[1, 3] = hxm
B[1, 5] = -hxp
B[1, 7] = hxp
B[5, 0] = -hxm
B[5, 1] = -hym
B[5, 2] = hxm
B[5, 3] = -hyp
B[5, 4] = -hxp
B[5, 5] = hym
B[5, 6] = hxp
B[5, 7] = hyp
if (self.Model.planestress):
# eps3 = -nu (sig1 + sig2)/E
hh = self.CV @ B # sig_(alpha,j)
B[2, :] = -self.Mat.nu * (hh[0, :] + hh[1, :]) / self.Mat.E
elif (self.Model.shapefact == 2):
h1 = 1. / self.Lelx
h2 = 4. / (self.Lelx * self.Lelx)
if (DIM == 1):
B[0, 0] = h2 * x - 3. * h1
B[0, 1] = 4. * h1 - 2. * h2 * x
B[0, 2] = h2 * x - h1
if (DIM == 2):
raise NotImplementedError('Error: Quadratic shape' +
'functions for 2D elements not yet implemented')
return B
[docs]
def geom(self, sect=1, LX=None, LY=1., LZ=1.):
'''Specify geometry of FE model with dimensions ``LX``, ``LY`` and ``LZ`` and
its subdivision into a number of sections;
for 2-d model a laminate structure normal to x-direction can be created easily
with the in-built option to pass a list with the absolute lengths of each section
in the parameter ``sect``. When this parameter is an integer it merely reserves
space for sections with arbitrary geometries;
adds attributes to class ``Model``
Parameters
----------
sect : list or int
Either number of sections (int) or list with with absolute length of each section
LX : float
Length of model in x-direction (optional, default None in which case LX is
calculated as the sum of the lengths of all sections)
LY : float
Length in y direction (optional, default: 1)
LZ : float
Thickness of model in z-direction (optional, default: 1)
'''
if type(sect) == list:
self.Nsec = len(sect) # number of sections
self.LS = np.array(sect)
self.lenx = sum(sect) # total length of model
elif type(sect) == int:
if sect < 1:
raise ValueError('At least one section must be defined.')
if LX is None:
raise ValueError('LX must be given if sect is of type int')
else:
self.lenx = LX
self.Nsec = sect
self.LS = np.ones(sect) * self.lenx / sect
else:
raise TypeError('Sect must be either list or int, not {}' \
.format(type(sect)))
self.leny = LY
self.thick = LZ
[docs]
def assign(self, mats):
'''Assigns an object of class ``Material`` to each section.
Parameters
----------
mats : list
List of materials, dimension must be equal to number of sections
Attributes
----------
material.mat : List of material objects
Internal variable for materials assigned to each section of the
geometry
material.nonlin : bool
Indicate if material non-linearity must be considered
'''
if len(mats) != self.Nsec:
raise ValueError('Numer of materials ({}) does not match number of sections ({})' \
.format(len(mats), self.Nsec))
self.mat = mats
self.nonlin = False
for mat in mats:
if mat.sy != None:
self.nonlin = True # nonlinear model if at least one material is plastic
# subroutines to define boundary conditions, top/bottom only needed for 2-d models
[docs]
def bcleft(self, val=0., bctype='disp', bcdir='x'):
'''Define boundary conditions on lhs nodes, either force or
displacement type; static boundary conditions are assumed for lhs boundary. The
default is freezing all x-displacements to zero.
Parameters
----------
val : float
Displacement or force of lhs nodes in bc_dir direction (optional, default: 0)
bctype : str
Type of boundary condition ('disp' or 'force')
(optional, default: 'disp')
bcdir : str or int
Direction of boundary load (optional, default: 'x')
'''
if bcdir.lower() == 'x' or bcdir == 0:
self.bcl[0] = val
j = 0
elif bcdir.lower() == 'y' or bcdir == 1:
self.bcl[1] = val
j = 1
else:
raise ValueError('bcleft: Unknown value for direction: {}' \
.format(bcdir))
if (bctype.lower() == 'disp'):
# type of boundary conditions (BC)
self.ubcleft[j] = True # True: displacement BC on lhs node
elif (bctype.lower() == 'force'):
self.ubcleft[j] = False # False: force BC on lhs node
if np.abs(val) > 1.e-6:
raise ValueError('Finite force values at left boundary not supported.')
else:
raise ValueError('bcleft: Unknown BC: %s' % bctype)
[docs]
def bcright(self, val, bctype, bcdir='x'):
'''Define boundary conditions on rhs nodes, either force or
displacement type.
If non-zero, the boundary loads will be incremented step-wise until the given
boundary conditions are fulfilled.
Parameters
----------
val : float
Displacement or force on rhs nodes in bc_dir direction
bctype : str
Type of boundary condition ('disp' or 'force')
bcdir : str or int
Direction of boundary load (optional, default: 'x')
'''
if bcdir.lower() == 'x' or bcdir == 0:
self.bcr[0] = val
j = 0
elif bcdir.lower() == 'y' or bcdir == 1:
self.bcr[1] = val
j = 1
else:
raise ValueError('bcright: Unknown value for direction :{}' \
.format(bcdir))
if (bctype.lower() == 'disp'):
# type of boundary conditions (BC)
self.ubcright[j] = True # True: displacement BC on rhs node
elif (bctype.lower() == 'force'):
self.ubcright[j] = False # False: force BC on rhs node
else:
raise TypeError('bcright: Unknown BC: {}'.format(bctype))
[docs]
def bcbot(self, val=0., bctype='disp', bcdir='y'):
'''Define boundary conditions on bottom nodes, either force or
displacement type; static boundary conditions are assumed for bottom boundary.
The default is freezing all y-displacements to zero.
Parameters
----------
val : float
Displacement in bcdir direction (optional, default: 0)
bctype : str
Type of boundary condition ('disp' or 'force')
(optional, default: 'disp')
bcdir : str or int
Direction of boundary load (optional, default: 'y')
'''
if self.dim != 2:
warnings.warn('BC on bottom nodes will be ignoresd for 2D model')
if bcdir.lower() == 'x' or bcdir == 0:
self.bcb[0] = val
j = 0
elif bcdir.lower() == 'y' or bcdir == 1:
self.bcb[1] = val
j = 1
else:
raise ValueError('bcleft: Unknown value for direction: {}' \
.format(bcdir))
if (bctype.lower() == 'disp'):
# type of boundary conditions (BC)
self.ubcbot[j] = True # True: displacement BC on bottom node
elif (bctype.lower() == 'force'):
self.ubcbot[j] = False # False: force BC on bottom node
if np.abs(val) > 1.e-6:
raise ValueError('Finite force values at bottom boundary not supported.')
else:
raise ValueError('bcbot: Unknown BC: {}'.format(bctype))
[docs]
def bctop(self, val, bctype, bcdir='y'):
'''Define boundary conditions on top nodes, either force or displacement type.
If non-zero, the boundary loads will be incremented step-wise until the given
boundary conditions are fulfilled.
Parameters
----------
val : float
Displacement or force in bcdir direction
bctype : str
Type of boundary condition ('disp' or 'force')
bcdir : str or int
Direction of boundary load (optional, default: 'y')
'''
if self.dim != 2:
warnings.warn('BC on top nodes will be ignored for 2D model')
if bcdir.lower() == 'x' or bcdir == 0:
self.bct[0] = val
j = 0
elif bcdir.lower() == 'y' or bcdir == 1:
self.bct[1] = val
j = 1
else:
raise ValueError('bcleft: Unknown value for direction {}: ' \
.format(bcdir))
if (bctype.lower() == 'disp'):
# type of boundary conditions (BC)
self.ubctop[j] = True # True: displacement BC on rhs node
elif (bctype.lower() == 'force'):
self.ubctop[j] = False # False: force BC on rhs node
else:
raise TypeError('bctop: Unknown BC: {}'.format(bctype))
[docs]
def bcnode(self, node, val, bctype, bcdir):
'''Define boundary conditions on a set of nodes defined in ``node``,
either force or displacement type in x or y-direction are accepted.
If non.zero, the boundary loads will be incremented step-wise until the given
boundary conditions are fulfilled.
Since nodes must be given, this subroutine can only be called after
meshing.
Parameters
----------
node : int or list of int
Node or set of nodes to which BC shall be applied
val : float
Displacement or force in bcdir direction
bctype : str
Type of boundary condition ('disp' or 'force')
bcdir : str or int
Direction of boundary load ('x' or 'y'; 0 or 1)
'''
if self.dim != 2:
warnings.warn('BC on chosen nodes will be ignored for 2D model')
if type(node) == list:
self.noset = node
else:
self.noset = [node]
if bcdir.lower() == 'x' or bcdir == 0:
self.bcn[0] = val
j = 0
elif bcdir.lower() == 'y' or bcdir == 1:
self.bcn[1] = val
j = 1
else:
raise ValueError('bcleft: Unknown value for direction {}' \
.format(bcdir))
if (bctype.lower() == 'disp'):
# type of boundary conditions (BC)
self.ubcn[j] = True # True: displacement BC on node
elif (bctype.lower() == 'force'):
self.ubcn[j] = False # False: force BC on node
else:
raise TypeError('bcnode: Unknown BC: {}'.format(bctype))
[docs]
def mesh(self, elmts=None, nodes=None, NX=10, NY=1, SF=1):
'''
Import mesh or
generate structured mesh with quadrilateral elements (2d models).
First, nodal positions ``Model.npos`` are defined such that nodes lie
at corners (linear shape function) and edges (quadratic shape function)
of elements.
Then, elements are initialized as object of class ``Model.Element``,
which requires the list of nodes associated with the element, the
dimensions of the element, and the material of the section in which
the element is situated to be passed.
Parameters
----------
elmts : (NX, NY) array
Represents number of material as defined by list Model.mat
nodes : (2,) array
Defines positions of nodes on regular grid.
NX : int
Number of elements in x-direction (optional, default: 10)
NY : int
Number of elements in y-direction (optional, default: 1)
SF : int
Degree of shape functions: 1=linear, 2=quadratic
(optional, default: 1)
'''
self.shapefact = SF
DIM = self.dim
if elmts is not None:
el = np.array(elmts, dtype=int)
sh = el.shape
if len(sh) != DIM:
raise ValueError('Cannot use a {}-shaped mesh with a {}-dimemsional model' \
.format(sh, DIM))
NX = sh[0]
NY = sh[1] if DIM > 1 else 1
if (NX < self.Nsec):
raise TypeError('Error: Number of elements is smaller than number of sections')
if (NY > 1 and DIM == 1):
NY = 1
warnings.warn('Warning: NY=1 for 1-d model')
if self.u is not None:
warnings.warn('Warning: Solution of previous steps is deleted')
self.u = None
self.f = None
self.NnodeX = self.shapefact * NX + 1 # number of nodes along x axis
self.NnodeY = (DIM - 1) * self.shapefact * NY + 1 # number of nodes along y axis
self.Nnode = self.NnodeX * self.NnodeY # total number of nodes
self.Ndof = self.Nnode * DIM # degrees of freedom
if nodes is None:
self.npos = np.zeros(self.Ndof) # position array of nodes
else:
self.npos = np.ravel(nodes, order='C')
if len(self.npos) != self.Nnode:
raise ValueError('Inconsistent definition of nodes: ' +
'{} nodes for {}-dim model with shape function={}' \
.format(len(self.npos) / DIM, DIM, SF))
self.Nel = NX * NY
self.element = [None] * self.Nel # empty list for elements
self.noleft = [] # list of nodes on left boundary
self.noright = [] # list of nodes on right boundary
self.nobot = [] # list of nodes on bottom boundary
self.notop = [] # list of nodes on top boundary
self.noinner = [] # list of inner nodes
if elmts is None:
# Calculate number of elements per section -- only laminate structure
hh = self.LS / self.lenx # proportion of segment length to total length of model
nes = [int(x) for x in np.round(hh * NX)] # nes gives number of elements per segement in proportion
if (np.sum(nes) != NX): # add or remove elements of largest section if necessary
im = np.argmax(self.LS)
nes[im] = nes[im] - np.sum(nes) + NX
# Define nodal positions and element shapes -- only for laminate structure
jstart = 0
nrow = self.NnodeY
dy = self.leny / NY
for i in range(self.Nsec):
# define nodal positions first
ncol = nes[i] * self.shapefact + 1
dx = self.LS[i] / nes[i]
nr = np.max([1, nrow - 1])
elstart = np.sum(nes[0:i], dtype=int) * nr
n1 = (int(elstart / NY) * nrow + int(np.mod(elstart, NY))) * \
self.shapefact
for j in range(jstart, ncol):
for k in range(nrow):
inode = j * nrow + k + n1
self.npos[inode * DIM] = (j + int(elstart / NY)) * dx # x-position of node
if (DIM == 2):
self.npos[inode * DIM + 1] = k * dy # y-position of node
nin = True
if (j == 0):
self.noleft.append(inode)
nin = False
if (k == 0):
self.nobot.append(inode)
nin = False
if (k == nrow - 1):
self.notop.append(inode)
nin = False
if ((i == self.Nsec - 1) and (j == ncol - 1)):
self.noright.append(inode)
nin = False
if nin:
self.noinner.append(inode)
# initialize elements
for j in range(nes[i] * nr):
ih = elstart + j # index of current element
n1 = (int(ih / NY) * nrow + ih % NY) * self.shapefact
n2 = n1 + self.shapefact
n3 = n1 + nrow * self.shapefact
n4 = n3 + self.shapefact
if (self.shapefact * DIM == 1):
self.element[ih] = self.Element(self, [n1, n2], dx, dy,
self.mat[i]) # 1-d, lin shape fct
elif (self.shapefact * DIM == 4):
nh = n1 + nrow + 1
hh = [n1, n1 + 1, n2, nh, nh + 1, n3, n3 + 1, n4] # 2-d, quad shape fct
self.element[ih] = self.Element(self, hh, dx, dy, self.mat[i])
elif (DIM == 2):
hh = [n1, n2, n3, n4] # 2-d, lin shape fct
self.element[ih] = self.Element(self, hh, dx, dy, self.mat[i])
else:
hh = [n1, n1 + 1, n2] # 1-d, lin shape fct
self.element[ih] = self.Element(self, hh, dx, dy, self.mat[i])
jstart = 1
else:
# create nodes on regular mesh if no nodes are given
if nodes is None:
dx = self.lenx / NX
dy = self.leny / NY
for j in range(self.NnodeX):
for k in range(self.NnodeY):
inode = j * self.NnodeY + k
self.npos[inode * DIM] = j * dx # x-position of node
if (DIM == 2):
self.npos[inode * DIM + 1] = k * dy # y-position of node
nin = True
if (j == 0):
self.noleft.append(inode)
nin = False
if (k == 0):
self.nobot.append(inode)
nin = False
if (k == self.NnodeY - 1):
self.notop.append(inode)
nin = False
if (j == self.NnodeX - 1):
self.noright.append(inode)
nin = False
if nin:
self.noinner.append(inode)
else:
# save nodes on boundaries
tol = 0.001 * self.lenx / NX
for inode, pos in enumerate(self.npos):
nin = True
if pos < tol:
if DIM == 1 or inode % 2 == 0:
self.noleft.append(inode)
if DIM == 2 and inode % 2 == 1:
self.nobot.append(inode)
nin = False
if pos > self.lenx - tol and (DIM == 1 or inode % 2 == 0):
self.noright.append(inode)
nin = False
if pos > self.leny - tol and DIM == 2 and inode % 2 == 1:
self.notop.append(inode)
nin = False
if nin:
self.noinner.append(inode)
# initialize elements
for j in range(NX):
for k in range(NY):
i = el[j, k] - 1
ih = j * NY + k
n1 = (int(ih / NY) * self.NnodeY + ih % NY) * self.shapefact
n2 = n1 + self.shapefact
n3 = n1 + self.NnodeY * self.shapefact
n4 = n3 + self.shapefact
if (self.shapefact * DIM == 1):
self.element[ih] = self.Element(self, [n1, n2], dx, dy,
self.mat[i]) # 1-d, lin shape fct
elif (self.shapefact * DIM == 4):
nh = n1 + self.NnodeY + 1
hh = [n1, n1 + 1, n2, nh, nh + 1, n3, n3 + 1, n4] # 2-d, quad shape fct
self.element[ih] = self.Element(self, hh, dx, dy, self.mat[i])
elif (DIM == 2):
hh = [n1, n2, n3, n4] # 2-d, lin shape fct
self.element[ih] = self.Element(self, hh, dx, dy, self.mat[i])
else:
hh = [n1, n1 + 1, n2] # 1-d, quadratic shape fct
self.element[ih] = self.Element(self, hh, dx, dy, self.mat[i])
[docs]
def setupK(self):
'''Calculate and assemble system stiffness matrix based on element stiffness matrices.
Returns
-------
K : 2d-array
System stiffness matrix
'''
DIM = self.dim
K = np.zeros((self.Ndof, self.Ndof)) # initialize system stiffness matrix
for el in self.element:
# assemble element stiffness matrix into system stiffness matrix
for j in range(len(el.nodes)):
j1 = el.nodes[j] * DIM # position of ux (1st dof) of left node in u vector
j2 = j1 + DIM
je1 = j * DIM
je2 = je1 + DIM
for k in range(len(el.nodes)):
k1 = el.nodes[k] * DIM
k2 = k1 + DIM
ke1 = k * DIM
ke2 = ke1 + DIM
K[j1:j2, k1:k2] += el.Kel[je1:je2, ke1:ke2]
return K
[docs]
def solve(self, min_step=None, verb=False):
'''Solve linear system of equations K.u = f with respect to u, to obtain distortions
of the system under the applied boundary conditions for mechanical equilibrium, i.e.,
when the total force on internal nodes is zero. In the first step, the stiffness
matrix K, the nodal displacements u and the nodal forces f are modified to conform
with the boundary conditions (``calc_BC``), then an elastic predictor step is calculated,
which is already the final solution for linear problems. For non-linear problems, i.e. for
plastic materials, the load step must be controlled and subdivided to fulfill
the side conditions of plastic materials, i.e. the equivalent stress must remain
smaller than the yield strength, or the flow stress during plastic yielding. This is
ensured in a self.consistency loop for non-linear models. The system of
equations is solved by invoking the subroutine numpy.linalg.solve. The method yields
the final solution
for nodal displacements u and nodal forces f as attributes of
class ``Model``; global stress, global total strain and global plastic strain are
evaluated and stored as attributes, too. Element solutions for stresses and strains
are stored as attributes of class ``Element``, see documentation of this class.
Parameters
----------
min_step : int
Minimum number of load steps (optional)
verb : Boolean
Be verbose in text output (optional, default: False)
Yields
------
Model.u : (Model.Ndof,) array
Nodal displacements
Model.f : (Model.Ndof,) array
Nodal forces
Model.sgl : (N,6) array
Global stress as as Voigt tensor for each incremental load step (homogenized element solution)
Model.egl : (N,6) array
Global total strain as as Voigt tensor for each incremental load step (homogenized element solution)
Model.epgl : (N,6) array
Global plastic strain as as Voigt tensor for each incremental load step (homogenized element solution)
Element.sig : (6,) array
Element solution for stress tensor
Element.eps : (6,) array
Element solution for total strain tensor
Element.epl : (6,) array
Element solution for plastic strain tensor
'''
# test if meshing has been performed
if self.Nnode is None:
raise AttributeError('Attributes for mesh not set, but required by solver.')
# calculate reduced stiffness matrix according to BC
def Kred(K, ind):
Kred = np.zeros((len(ind), len(ind)))
for i in range(len(ind)):
for j in range(len(ind)):
Kred[i, j] = K[ind[i], ind[j]]
return Kred
# calculate scaling factor for load steps
def calc_scf():
sc_list = []
for el in self.element:
# test if yield criterion is exceeded
sref = Stress(el.dsig()).seq(el.Mat) # max. element stress increment
if el.Mat.sy != None and sref > 0.1: # not necessary for elastic material or small steps
yf0 = el.Mat.calc_yf(el.sig, epl=el.epl) # yield fct. at start of load step
# if element starts in elastic regime load step can only touch yield surface
if yf0 < -0.15:
if el.Mat.ML_yf:
# for categorial ML yield function, calculate yf0
# as exact distance to yield surface
yf0 = el.Mat.ML_full_yf(el.sig, el.epl, ld=sld, verb=verb)
hh = np.minimum(1., -yf0 / sref)
sc_list.append(hh)
else:
# make sure load step does not exceed yield surface too much
hh = np.minimum(1., np.sqrt(1.5) * el.Mat.get_sflow(eps_eq(el.epl)) / sref)
sc_list.append(hh)
# select scaling appropriate scaling such that no element crosses yield surface
if len(sc_list) == 0: sc_list = [1.]
hh = np.std(sc_list)
if hh < 0.1:
scf = np.amin(sc_list) # if almost all elements have same yield fct, take minimum
else:
hm = np.mean(sc_list)
scf = np.maximum(1.e-3, hm - hh) # otherwise take average - standard deviation
if scf < 1.e-3:
if verb:
warnings.warn('Warning: Small load increment in calc_scf: ' + str(scf))
scf = 1.e-3
return scf
# define BC: modify stiffness matrix for displacement BC, calculate consistent force BC
def calc_BC(K, bcl0, bcb0, dbcr, dbct, dbcn):
'''BC on lhs and bottom nodes nodes is always static.
Displacement type BC are applied by adding known boundary forces to solution vector
to reduce rank of system of equations by 1 (one row eliminated)
Paramaters
----------
K : (Ndof, Ndof)-array
stiffness matrix
bcl0, bcb0 : dim-arrays
static BC on lhs and bottom nodes
dbcr, dbct : dim-arrays
increment of BC on rhs and top nodes
dbcn : dim-array
increment of BC on selected node set
Returns
-------
du : (Ndof)-array
Increment of nodal displacements at bpundary
df : (Ndof)-array
Increment of nodal forces at boundary
ind : list
List of all nodal DOF for which solution must be calculated,
i.e. for which no displacement-type BC are given.
'''
du = np.zeros(self.Ndof)
df = np.zeros(self.Ndof)
ind = list(range(self.Ndof)) # list of all nodal DOF, will be shortened according to BC
for k in range(self.dim):
if self.ubcleft[k]:
for j in self.noleft:
i = j * self.dim + k # postion of x or y-values of node #j in u/f vector
ind.remove(i)
du[i] = bcl0[k]
df[ind] -= K[ind, i] * bcl0[k]
if self.dim == 2:
# BC on bottom nodes is always static
# apply BC by adding known boundary forces to solution vector
# to reduce rank of system of equations by 1 (one row eliminated)
for k in range(self.dim):
if self.ubcbot[k]:
for j in self.nobot:
i = j * self.dim + k # postion of x or y-values of node #j in u/f vector
if i in ind:
ind.remove(i)
du[i] = bcb0[k]
else:
if du[i] != bcb0[k]:
warnings.warn('Inconsistent BC at left ({}) and bottom node {} ({}).' \
.format(du[i], j, bcb0[k]))
df[ind] -= K[ind, i] * bcb0[k]
# rhs node BC can be force or displacement
# apply BC and solve corresponding system of equations
for k in range(self.dim):
if self.ubcright[k]:
# displacement BC
# add known boundary force to solution vector to
# eliminate row Ndof from system of equations
for j in self.noright:
i = j * self.dim + k
if i in ind:
ind.remove(i)
du[i] = dbcr[k]
else:
if du[i] != dbcr[k]:
warnings.warn('Inconsistent BC at right node {} ({}) and bottom ({}).' \
.format(j, du[i], dbcr[k]))
hh = list(range(self.Ndof))
hh.remove(i)
df[hh] -= K[i, hh] * dbcr[k]
else:
# force bc on rhs nodes
for j in self.noright:
i = j * self.dim + k
hh = 1. / (self.NnodeY - 1) # calculate share of force on nodes
hy = self.npos[j * self.dim + 1] # y-position of node
if hy < 1.e-3 or hy > self.leny - 1.e-3:
hh *= 0.5 # reduce force on corner nodes
df[i] += dbcr[k] * hh
# BC on top nodes can be force or displacement
# apply BC and solve corresponding system of equations
if self.dim == 2:
for k in range(self.dim):
if self.ubctop[k]:
# displacement BC
# add known boundary force to solution vector to
# eliminate row Ndof from system of equations
for j in self.notop:
i = j * self.dim + k
if i in ind:
ind.remove(i)
du[i] = dbct[k]
else:
if du[i] != dbct[k]:
warnings.warn('Inconsistent BC at top ({}) and left/right node {} ({}).' \
.format(du[i], j, dbcr[k]))
df[ind] -= K[ind, i] * dbct[k]
else:
# force bc on top nodes
for j in self.notop:
i = j * self.dim + k
hh = 1. / (self.NnodeX - 1) # share of force for each node
hx = self.npos[j * self.dim] # x-position of node
if hx < 1.e-3 or hx > self.lenx - 1.e-3:
hh *= 0.5 # reduce force on corner nodes
df[i] += dbct[k] * hh
# BC on selected node set can be force or displacement
# apply BC and solve corresponding system of equations
if self.dim == 2 and self.noset is not None:
if dbcn is None:
raise ValueError('No BC for selected node set given.')
for k in range(self.dim):
if self.ubcn[k]:
# displacement BC
# add known boundary force to solution vector to
# eliminate row Ndof from system of equations
for j in self.noset:
i = j * self.dim + k
if i in ind:
ind.remove(i)
du[i] = dbcn[k]
else:
if du[i] != dbcn[k]:
warnings.warn('Inconsistent BC at node set ({}) and left/right node {} ({}).' \
.format(du[i], j, dbcn[k]))
df[ind] -= K[ind, i] * dbcn[k]
else:
# force bc on node set
for j in self.noset:
i = j * self.dim + k
df[i] += dbcn[k]
return du, df, ind
# start of solution subroutine
jin = []
for j in self.noinner:
jin.append(j * self.dim)
jin.append(j * self.dim + 1)
if self.u is None:
# declare and initialize solution and result vectors, and boundary conditions
self.u = np.zeros(self.Ndof)
self.f = np.zeros(self.Ndof)
self.sgl = np.zeros((1, 6))
self.egl = np.zeros((1, 6))
self.epgl = np.zeros((1, 6))
# initialize element quantities
for el in self.element:
el.elstiff = el.CV
el.calc_Kel()
el.eps = np.zeros(6)
el.sig = np.zeros(6)
el.epl = np.zeros(6)
bcr0 = np.zeros(self.dim)
bct0 = np.zeros(self.dim)
self.bct_mem = np.zeros(self.dim)
self.bcr_mem = np.zeros(self.dim)
if self.noset is not None:
bcn0 = np.zeros(self.dim)
self.bcn_mem = np.zeros(self.dim)
else:
bcr0 = self.bcr_mem
bct0 = self.bct_mem
if self.noset is not None:
bcn0 = self.bcn_mem
bcl0 = self.bcl
bcb0 = self.bcb
K = self.setupK() # assemble system stiffness matrix from element stiffness matrices
# construct Voigt type tensor in loading direction for search of yield
# point, used for scaling of load step for ML flow rules
sld = np.zeros(6)
if np.abs(self.bcr[0]) > 1.e-6:
sld[0] = np.sign(self.bcr[0])
if self.dim > 1:
if np.abs(self.bct[1]) > 1.e-6:
sld[1] = np.sign(self.bct[1])
if np.abs(self.bcr[1]) > 1.e-6:
sld[5] = np.sign(self.bcr[1])
if np.abs(self.bct[0]) > 1.e-6:
sld[5] = np.sign(self.bct[0])
if np.linalg.norm(sld) < 1.e-3:
warnings.warn('solve: inconsistent BC sld={}, bct={}, bcr={}'
.format(sld, self.bct, self.bcr))
sld[0] = 1.
# define loop for external load steps (BC subdivision)
# during each load step mechanical equilibrium is calculated for sub-step
# the tangent stiffness matrix of the last load step is used as initial guess
# current tangent stiffness matrix compatible with BC is determined iteratively
il = 0
nit = 0
niter = []
co_nconv = []
bc_inc = True
nconv = 0
while bc_inc:
# define global increments for boundary conditions
max_dbct = self.bct - bct0
max_dbcr = self.bcr - bcr0
if min_step is not None:
sc = np.maximum(1, min_step - il)
max_dbct /= sc
max_dbcr /= sc
# calculate du and df fulfilling mech. equil. for max. load step consistent with stiffness matrix K
dbcr = max_dbcr
dbct = max_dbct
if self.noset is not None:
max_dbcn = self.bcn - bcn0
if min_step is not None:
max_dbcn /= np.maximum(1, min_step - il)
dbcn = max_dbcn
else:
dbcn = None
# linear model can be solved directly in one step, elastic predictor for nonlinear models
self.du, df, ind = calc_BC(K, bcl0, bcb0, dbcr, dbct, dbcn) # consider BC for system of equ.
self.du[ind] = np.linalg.solve(Kred(K, ind), df[ind]) # Solve reduced system of equations
if self.nonlin:
# calculate scaling factor for predictor step in case of non-linear model
# calculate global predictor step to hit the yield surface
scale_bc = (calc_scf() if il < 10 else 1.)
dbcr = max_dbcr * scale_bc # improves the accuracy of the initial yield point
dbct = max_dbct * scale_bc # for finite element simulation
nit = 0
change = True
conv = False
if verb:
print('***Load step #', il)
print('scaling factor', scale_bc)
while (change or not conv) and nit <= 15:
# repeat solution step until stiffness matrix remains unchanged
# a proper Newton-Raphson algorithm should be implemented here
if il < 6 and nit > 1:
# start reducing load increments to reach convergence
hs = 0.5
for k in range(self.dim):
if max_dbcr[k] >= 0:
hh = np.minimum(self.bcr[k] - bcr0[k], dbcr[k] * hs)
dbcr[k] = np.maximum(0.05 * max_dbcr[k], hh)
else:
hh = np.maximum(self.bcr[k] - bcr0[k], dbcr[k] * hs)
dbcr[k] = np.minimum(0.05 * max_dbcr[k], hh)
if max_dbct[k] >= 0:
hh = np.minimum(self.bct[k] - bct0[k], dbct[k] * hs)
dbct[k] = np.maximum(0.05 * max_dbct[k], hh)
else:
hh = np.maximum(self.bct[k] - bct0[k], dbct[k] * hs)
dbct[k] = np.minimum(0.05 * max_dbct[k], hh)
if self.noset is not None:
if max_dbcn[k] >= 0:
hh = np.minimum(self.bcn[k] - bcn0[k], dbcn[k] * hs)
dbcn[k] = np.maximum(0.05 * max_dbcn[k], hh)
else:
hh = np.maximum(self.bcn[k] - bcn0[k], dbcn[k] * hs)
dbcn[k] = np.minimum(0.05 * max_dbcn[k], hh)
# solve system with current K matrix
K = self.setupK() # assemble updated tangent stiffness matrix
self.du, df, ind = calc_BC(K, bcl0, bcb0, dbcr, dbct, dbcn)
self.du[ind] = np.linalg.solve(Kred(K, ind), df[ind]) # solve du with current stiffness matrix
# evaluate material response in each element
f = []
change = False # flag if stiffness matrix is changing
for el in self.element:
if (el.Mat.sy != None): # not necessary for elastic material
fyld, el.res_sig, el.res_depl, gr_stiff = \
el.Mat.response(el.sig, el.epl, el.deps(), el.CV)
el.res_deps = el.deps()
f.append(fyld / el.Mat.get_sflow(eps_eq(el.epl))) # store result of yield function
hh = np.linalg.norm(
el.elstiff - gr_stiff) # Frobenius norm of differences b/w stiffness matrices before and after load step
if hh > 1.e-3:
# if difference is too large, update element stiffness matrix
if nit < 15:
el.elstiff = gr_stiff
else:
el.elstiff = 0.5 * (gr_stiff + el.elstiff)
el.calc_Kel() # update element stiffness matrix
change = True
el.stat_nlin['max_steps'] = np.maximum(el.Mat.msg['nsteps'], el.stat_nlin['max_steps'])
el.stat_nlin['max_dstiff'] = np.maximum(hh, el.stat_nlin['max_dstiff'])
else:
f.append(0.)
f = np.array(f)
conv = np.all(f <= yf_tolerance * 1.0001)
if verb:
if not conv:
print('\n ### Warning: No convergence of plasticity algorithm in trial step #', nit)
print(' ### yield function=', f) # ,'residual forces on inner nodes=',fres[jin])
print(' ### Convergence stats (ptol=', yf_tolerance, '):')
for j, el in enumerate(self.element):
print('EL #', j, 'iteration steps:', \
el.stat_nlin['max_steps'], 'max. Dstiff:', el.stat_nlin['max_dstiff'])
print('\n')
print('+++Inner trial step #', nit)
# fres = K @ (self.u+self.du)
print('load increment right:', dbcr)
print('load increment top:', dbct)
if self.noset is not None:
print('load increment set:', dbcn)
if not conv:
nconv += 1
nit += 1
# end while change
# end if nonlin
# update internal variables with results of load step
self.u += self.du
self.f += K @ self.du
for el in self.element:
if el.res_sig is None:
el.epl += el.depl()
el.sig += el.dsig()
else:
el.epl += el.res_depl
el.sig = el.res_sig
el.eps = el.eps_t()
# update load step
il += 1
niter.append(nit - 1)
co_nconv.append(nconv)
bcr0 += dbcr
hl0 = np.abs(bcr0[0] - self.bcr[0]) > 1.e-6 and np.abs(self.bcr[0]) > 1.e-9
if self.dim > 1:
hl1 = np.abs(bcr0[1] - self.bcr[1]) > 1.e-6 and np.abs(self.bcr[1]) > 1.e-9
bct0 += dbct
hr0 = np.abs(bct0[0] - self.bct[0]) > 1.e-6 and np.abs(self.bct[0]) > 1.e-9
hr1 = np.abs(bct0[1] - self.bct[1]) > 1.e-6 and np.abs(self.bct[1]) > 1.e-9
if self.noset is not None:
bcn0 += dbcn
hr0 = hr0 or (np.abs(bcn0[0] - self.bcn[0]) > 1.e-6 and np.abs(self.bcn[0]) > 1.e-9)
hr1 = hr1 or (np.abs(bcn0[1] - self.bcn[1]) > 1.e-6 and np.abs(self.bcn[1]) > 1.e-9)
else:
hl1 = False
hr0 = False
hr1 = False
bc_inc = hr0 or hr1 or hl0 or hl1
# store time dependent quantities
self.calc_global() # calculate global values for solution
self.sgl = np.append(self.sgl, [self.glob['sig']], axis=0)
self.egl = np.append(self.egl, [self.glob['eps']], axis=0)
self.epgl = np.append(self.epgl, [self.glob['epl']], axis=0)
if verb:
print('Iteration step #', nit)
print('Load increment ', il, 'total', self.ubctop, 'top ', bct0, '/', self.bct, '; last step ', dbct)
print('Load increment ', il, 'total', self.ubcright, 'rhs', bcr0, '/', self.bcr, '; last step ', dbcr)
if self.noset is not None:
print('Load increment ', il, 'total', self.ubcn, 'set', bcn0, '/', self.bcn, '; last step ', dbcn)
print('BC strain (11,22,12): ',
np.around([self.glob['ebc1'], self.glob['ebc2'], self.glob['ebc12']], decimals=5))
print('BC stress (11,22,12): ',
np.around([self.glob['sbc1'], self.glob['sbc2'], self.glob['sbc12']], decimals=3))
print('Global strain: ', np.around(self.glob['eps'], decimals=5))
print('Global stress: ', np.around(self.glob['sig'], decimals=3))
print('Global plastic strain: ', np.around(self.glob['epl'], decimals=6))
seq = sig_eq_j2(self.glob['sig'])
if seq > 1.e-3:
hh = np.abs(self.glob['sbc1'] - self.glob['sig'][0])
hh += np.abs(self.glob['sbc2'] - self.glob['sig'][1])
hh += np.abs(self.glob['sbc12'] - self.glob['sig'][5])
hh /= seq
if hh > 1.e-3:
warnings.warn('***Inconstistent stiffness matrix!\
Rel. error is stress={}'.format(hh))
print(self.glob)
hh = [el.sig - el.CV @ (el.eps - el.epl) for el in self.element]
if np.abs(np.amax(hh)) > 1.:
warnings.warn('\n ***TEST failed: {}\n\n'.format(hh))
print('----------------------------')
self.bct_mem = bct0
self.bcr_mem = bcr0
self.nsteps = il
self.niter = niter
self.co_nconv = co_nconv
[docs]
def bcval(self, nodes):
'''Calculate average displacement and total force at (boundary) nodes
Parameters
----------
nodes : list
List of nodes
'''
hux = 0.
huy = 0.
hfx = 0.
hfy = 0.
n = len(nodes)
for i in nodes:
hux += self.u[i * self.dim]
hfx += self.f[i * self.dim]
if (self.dim == 2):
huy += self.u[i * self.dim + 1]
hfy += self.f[i * self.dim + 1]
return hux / n, huy / n, hfx, hfy
[docs]
def calc_global(self):
'''Calculate global quantities and store in Model.glob;
homogenization done by averaging residual forces (sbc1/2) and displacements (ebc1/2) at boundary nodes
or by averaging element quantities (sig, eps, epl)
Yields
------
Model.glob : dictionary
Values for stress ('sig'), total strain ('eps') and plastic strain ('epl')
as homogenized element solutions (Voigt tensors); values for (11)- and
(22)-components of stress ('sbc1','scb2') and total strain ('ebc1', 'ebc2')
as homogenized values of boundary nodes.
'''
# calculate global values from BC
uxl, uyl, fxl, fyl = self.bcval(self.noleft)
uxr, uyr, fxr, fyr = self.bcval(self.noright)
self.glob['ebc1'] = (uxr - uxl) / self.lenx
self.glob['sbc1'] = 0.5 * (fxr - fxl) / (self.leny * self.thick)
self.glob['ebc21'] = (uyr - uyl) / self.lenx
self.glob['sbc21'] = 0.5 * (fyr - fyl) / (self.leny * self.thick)
if (self.dim == 2):
uxb, uyb, fxb, fyb = self.bcval(self.nobot)
uxt, uyt, fxt, fyt = self.bcval(self.notop)
self.glob['ebc2'] = (uyt - uyb) / self.leny
self.glob['sbc2'] = 0.5 * (fyt - fyb) / (self.lenx * self.thick)
self.glob['ebc12'] = (uxt - uxb) / self.leny
self.glob['sbc12'] = 0.5 * (fxt - fxb) / (self.lenx * self.thick)
# calculate global values from element solutions
sig = np.zeros(6)
eps = np.zeros(6)
epl = np.zeros(6)
for el in self.element:
sig += el.sig * el.Vel
eps += el.eps * el.Vel
epl += el.epl * el.Vel
Vm = self.lenx * self.leny * self.thick # Volume of model
self.glob['sig'] = sig / Vm
self.glob['eps'] = eps / Vm
self.glob['epl'] = epl / Vm
[docs]
def plot(self, fsel, mag=10, colormap='viridis', cdepth=20, showmesh=True, shownodes=True,
vmin=None, vmax=None, annot=True, file=None, show_fig=True, pos_bar=0.83,
fig=None, ax=None, show_bar=True):
'''Produce graphical output: draw elements in deformed shape with color
according to field variable 'fsel'; uses matplotlib
Parameters
----------
fsel : str
Field selector for library field, see Keyword Arguments for possible values
mag : float
Magnification factor for displacements (optional, default: 10)
vmin : float
Start value for range of plotted values
vmax : float
End value for range of plotted values
cdepth : int
Number of colors in colormap (optional, default: 20)
showmesh : Boolean
Set/unset plotting of lines for element edges (optional, default: True)
shownodes: Boolean
Set/unset plotting of nodes (optional, default: True)
colormap : str
Name of colormap to be used (optional, default: viridis)
annot : Boolean
Show annotations for x and y-axis (optional, default: True)
file : str
If a filename is provided, plot is exported as PDF (optional, default: None)
show_fig : bool
True: show figure, False: return figure handle (optional, default: True)
pos_bar : float
Position of color bar, (optional;
for use in Jupyter notebook: 1.01, for python: 0.83)
Keyword Arguments
-----------------
strain1 :
total strain in horizontal direction
strain2 :
total strain in vertical direction
strain12 :
total shear strain, xy-component
stress1 :
horizontal stress component
stress2 :
vertical stress component
stress12 :
xy-shear stress component
plastic1 :
plastic strain in horizontal direction
plastic2 :
plastic strain in vertical direction
plastic12 :
plastic strain, xy-component
seq :
equivalent stress (Hill-formulation for anisotropic plasticity)
seqJ2 :
equivalent J2 stress
peeq :
equivalent plastic strain
etot :
equivalent total strain
ux :
horizontal displacement
uy :
vertical displacement
mat :
materials and sections of model
'''
if fig is None:
fig, ax = plt.subplots(1)
else:
if ax is None:
raise ValueError('Figure handle is provided, but no axis handle.')
cmap = plt.cm.get_cmap(colormap, cdepth)
def strain1():
hh = [el.eps[0] * 100 for el in self.element]
text_cb = r'$\epsilon^\mathrm{tot}_{11}$ (%)'
return hh, text_cb
def strain2():
hh = [el.eps[1] * 100 for el in self.element]
text_cb = r'$\epsilon^\mathrm{tot}_{22}$ (%)'
return hh, text_cb
def strain12():
hh = [el.eps[5] * 100 for el in self.element]
text_cb = r'$\epsilon^\mathrm{tot}_{12}$ (%)'
return hh, text_cb
def stress1():
hh = [el.sig[0] for el in self.element]
text_cb = r'$\sigma_{11}$ (MPa)'
return hh, text_cb
def stress2():
hh = [el.sig[1] for el in self.element]
text_cb = r'$\sigma_{22}$ (MPa)'
return hh, text_cb
def stress12():
hh = [el.sig[5] for el in self.element]
text_cb = r'$\sigma_{12}$ (MPa)'
return hh, text_cb
def plastic1():
hh = [el.epl[0] * 100 for el in self.element]
text_cb = r'$\epsilon^\mathrm{pl}_{11}$ (%)'
return hh, text_cb
def plastic2():
hh = [el.epl[1] * 100 for el in self.element]
text_cb = r'$\epsilon^\mathrm{pl}_{22}$ (%)'
return hh, text_cb
def plastic12():
hh = [el.epl[5] * 100 for el in self.element]
text_cb = r'$\epsilon^\mathrm{pl}_{12}$ (%)'
return hh, text_cb
def stress_eq():
hh = [Stress(el.sig).seq(el.Mat) for el in self.element]
text_cb = r'$\sigma_{eq}$ (MPa)'
return hh, text_cb
def stress_eqJ2():
hh = [Stress(el.sig).seq_j2() for el in self.element]
text_cb = r'$\sigma^\mathrm{J2}_{eq}$ (MPa)'
return hh, text_cb
def strain_peeq():
hh = [eps_eq(el.epl) * 100 for el in self.element]
text_cb = r'$\epsilon^\mathrm{pl}_{eq}$ (%)'
return hh, text_cb
def strain_etot():
hh = [eps_eq(el.eps) * 100 for el in self.element]
text_cb = r'$\epsilon^\mathrm{tot}_{eq}$ (%)'
return hh, text_cb
def disp_x():
hh = np.zeros(self.Nel)
for ie, el in enumerate(self.element):
fac = 1.0 / len(el.nodes)
for nn in el.nodes:
hh[ie] += self.u[nn * self.dim] * fac
text_cb = r'$u_x$ (mm)'
return hh, text_cb
def disp_y():
hh = np.zeros(self.Nel)
for ie, el in enumerate(self.element):
fac = 1.0 / len(el.nodes)
for nn in el.nodes:
hh[ie] += self.u[nn * self.dim + 1] * fac
text_cb = r'$u_y$ (mm)'
return hh, text_cb
def disp_mat():
hh = [el.Mat.num for el in self.element]
text_cb = 'Material number'
return hh, text_cb
field = {
'strain1': strain1,
'strain2': strain2,
'strain12': strain12,
'stress1': stress1,
'stress2': stress2,
'stress12': stress12,
'plastic1': plastic1,
'plastic2': plastic2,
'plastic12': plastic12,
'seq': stress_eq,
'seqJ2': stress_eqJ2,
'peeq': strain_peeq,
'etot': strain_etot,
'ux': disp_x,
'uy': disp_y,
'mat': disp_mat
}
# define color value by mapping field value of element to interval [0,1]
val, text_cb = field[fsel]()
auto_scale = (vmin is None) and (vmax is None)
if vmin is None:
vmin = np.amin(val)
if vmax is None:
vmax = np.amax(val)
delta = np.abs(vmax - vmin)
if auto_scale and (delta < 0.1 or delta / vmax < 0.04):
if np.abs(vmax) < 0.1:
vmax += 0.05
vmin -= 0.05
elif vmax > 0.:
vmax *= 1.02
vmin *= 0.98
else:
vmax *= 0.98
vmin *= 1.02
delta = np.abs(vmax - vmin)
col = np.round(np.subtract(val, vmin) / delta, decimals=5)
# create element plots
for el in self.element:
# draw filled polygon for each element
if (self.dim == 1):
ih = np.amin(el.nodes) # left node of current element
jh = np.amax(el.nodes) # right node of current element
ih1 = ih * self.dim # position of ux in u vector
jh1 = jh * self.dim # position of ux in u vector
hx1 = self.npos[ih] # x position of left node
hx2 = self.npos[jh] # x position of right node
if mag > 0. and self.u is not None:
hx1 += mag * self.u[ih1] # add nodal displacement
hx2 += mag * self.u[jh1]
hh = self.thick * 0.5
hx = [hx1, hx2, hx2, hx1]
hy = [-hh, -hh, hh, hh]
else:
hx = [0, 0, 0, 0]
hy = [0, 0, 0, 0]
k = [0, 3, 1, 2]
for p, ih in enumerate(el.nodes):
j = ih * self.dim
hx[k[p]] = self.npos[j]
hy[k[p]] = self.npos[j + 1]
if mag > 0. and self.u is not None:
hx[k[p]] += mag * self.u[j]
hy[k[p]] += mag * self.u[j + 1]
ax.fill(hx, hy, color=cmap(col[self.element.index(el)]))
if (showmesh):
hx.append(hx[0])
hy.append(hy[0])
ax.plot(hx, hy, 'k', lw=1) # plot edges of elements
# plot nodes
if (shownodes):
hh = self.npos
if mag > 0. and self.u is not None:
hh += mag * self.u
if (self.dim == 1):
hx = hh
hy = np.zeros(self.Ndof)
else:
hx = hh[0:self.Ndof:2]
hy = hh[1:self.Ndof:2]
ax.scatter(hx, hy, s=50, c='red', marker='o', zorder=3)
# add colorbar
if show_bar:
axl = fig.add_axes([pos_bar, 0.15, 0.04, 0.7]) # [left, bottom, width, height]
norm = colors.Normalize(vmin=vmin, vmax=vmax, clip=False)
cb1 = colorbar.ColorbarBase(axl, cmap=cmap, norm=norm, orientation='vertical')
cb1.set_label(text_cb)
# add axis annotations
if annot:
ax.set_xlabel('x (mm)')
ax.set_ylabel('y (mm)')
ax.set_aspect('equal', 'box') # enforce equal scale on both axes
# fig.tight_layout()
# save plot to file if filename is provided
if file is not None:
fig.savefig(file + '.pdf', format='pdf', dpi=300)
if show_fig:
plt.show()
else:
return fig, ax